Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.08.31.555805

ABSTRACT

During the COVID-19 pandemic, vaccines have produced protective immunity sufficient enough to cause a decrease in hospitalizations and deaths; however, the pandemic continues due to mutational events, predominantly occurring in the S1 sequence of the spike protein of SARS-CoV-2. We have developed a baculovirus-expressed, modified S1 SARS-CoV-2 protein based on the C.1.2 variant, which was first identified in South Africa.1 This was encapsulated in a vitamin E containing, nonphospholipid liposome, which was then used to subcutaneously immunize Syrian hamsters. This vaccine, when administered at day 1 generates IgG responses that react to the modified C.1.2 S1 protein; full-length spike proteins from Wuhan-Hu-1, Delta, Omicron BA.1; and the Omicron recombinant variant XBB.1.5 in 100% of the animals. The second dose administered subcutaneously on day 28 demonstrated anamnestic response in the quantitative IgG assay to the Wuhan-Hu-1 spike Receptor Binding Domain (RBD). In addition, antibody IgA and IgM responses in sera were demonstrated. Serum IgG antibody responses to the spike proteins of the modified C.1.2 S1 and full-length spike proteins Wuhan-Hu-1, Delta, Omicron BA.1, and Omicron recombinant XBB.1.5 variants are elevated for over 120 days. Challenge of vaccinated and unvaccinated hamsters at day 126 of the study with an Omicron BA.1 resulted in a difference in weight change and viral load based on the qRT-PCR assay seven days after challenge.


Subject(s)
COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.08.01.551509

ABSTRACT

DNA- based vaccines have demonstrated the potential as a safe and effective modality. PlaCCine, a DNA-based vaccine approach described subsequently relies on a synthetic DNA delivery system and is independent of virus or device. The synthetic functionalized polymer combined with DNA demonstrated stability over 12 months at 4C and for one month at 25C. Transfection efficiency compared to naked DNA increased by 5-15-fold in murine skeletal muscle. Studies of DNA vaccines expressing spike proteins from variants D614G (pVAC15), Delta (pVAC16), or a D614G + Delta combination (pVAC17) were conducted. Mice immunized intramuscular injection (IM) with pVAC15, pVAC16 or pVAC17 formulated with functionalized polymer and adjuvant resulted in induction of spike-specific humoral and cellular responses. Antibody responses were observed after one immunization. And endpoint IgG titers increased to greater than 1x 105 two weeks after the second injection. Neutralizing antibodies as determined by a pseudovirus competition assay were observed following vaccination with pVAC15, pVAC16 or pVAC17. Spike specific T cell immune responses were also observed following vaccination and flow cytometry analysis demonstrated the cellular immune responses included both CD4 and CD8 spike specific T cells. The immune responses in vaccinated mice were maintained for up to 14 months after vaccination. In an immunization and challenge study of K18 hACE2 transgenic mice pVAC15, pVAC16 and pVAC17 induced immune responses lead to decreased lung viral loads by greater than 90% along with improved clinical score. These findings suggest that PlaCCine DNA vaccines are effective and stable and further development against emerging SARS-CoV-2 variants is warranted.


Subject(s)
COVID-19
3.
Microbes Infect ; 25(4): 105082, 2023 05.
Article in English | MEDLINE | ID: covidwho-2308846

ABSTRACT

Available COVID-19 vaccine only provide protection for a limited time due in part to the rapid emergence of viral variants with spike protein mutations, necessitating the generation of new vaccines to combat SARS-CoV-2. Two serologically distinct replication-defective chimpanzee-origin adenovirus (Ad) vectors (AdC) called AdC6 and AdC7 expressing early SARS-CoV-2 isolate spike (S) or nucleocapsid (N) proteins, the latter expressed as a fusion protein within herpes simplex virus glycoprotein D (gD), were tested individually or as a mixture in a hamster COVID-19 SARS-CoV-2 challenge model. The S protein expressing AdC (AdC-S) vectors induced antibodies including those with neutralizing activity that in part cross-reacted with viral variants. Hamsters vaccinated with the AdC-S vectors were protected against serious disease and showed accelerated recovery upon SARS-CoV-2 challenge. Protection was enhanced if AdC-S vectors were given together with the AdC vaccines that expressed the gD N fusion protein (AdC-gDN). In contrast hamsters that just received the AdC-gDN vaccines showed only marginal lessening of symptoms compared to control animals. These results indicate that immune response to the N protein that is less variable than the S protein may potentiate and prolong protection achieved by the currently used S protein based genetic COVID-19 vaccines.


Subject(s)
COVID-19 , Animals , Cricetinae , Humans , COVID-19/prevention & control , SARS-CoV-2/genetics , COVID-19 Vaccines/genetics , Pan troglodytes , Adenoviridae/genetics , Nucleocapsid , Immunization , Antibodies, Viral , Antibodies, Neutralizing
4.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1928234.v1

ABSTRACT

Background: Since the beginning of the COVID-19 pandemic, several variants of concern (VOC) have emerged for which there is evidence of an increase in transmissibility, more severe disease, and/or reduced vaccine effectiveness. Effective COVID-19 vaccine strategies are required to achieve broad protective immunity against current and future VOC. Methods: We conducted immunogenicity and challenge studies in macaques and hamsters using a bivalent recombinant vaccine formulation containing the SARS-CoV-2 prefusion-stabilized Spike trimers of the parental D614 and the Beta (B.1.351) strains with AS03 adjuvant (CoV2 preS dTM-AS03) in a primary immunization setting. Results: We show that a primary immunization with the bivalent CoV2 preS dTM-AS03 elicits broader and durable neutralizing antibody responses against VOC including Omicron BA.1, and SARS-CoV-1 as compared to the parental D614 or Beta variant monovalent vaccines in naïve non-human primates. In addition, the bivalent formulation confers protection against viral challenge with SARS-CoV-2 parental D614G strain as well as Alpha and Beta variant strains in hamsters. Conclusions: Our findings demonstrate the potential of a Beta-containing bivalent CoV2 preS dTM-AS03 formulation to provide broad and stable immunogenicity, as well as protection against VOC in naïve populations.


Subject(s)
COVID-19
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.02.474743

ABSTRACT

The SARS-CoV-2 Omicron (B.1.1.529) variant has proven highly transmissible and has outcompeted the Delta variant in many regions of the world. Early reports have also suggested that Omicron may result in less severe clinical disease in humans. Here we show that Omicron is less pathogenic than prior SARS-CoV-2 variants in Syrian golden hamsters. Infection of hamsters with the SARS-CoV-2 WA1/2020, Alpha, Beta, or Delta strains led to 4-10% weight loss by day 4 and 10-17% weight loss by day 6, as expected. In contrast, infection of hamsters with two different Omicron challenge stocks did not result in any detectable weight loss, even at high challenge doses. Omicron infection still led to substantial viral replication in both the upper and lower respiratory tracts and pulmonary pathology, but with a trend towards higher viral loads in nasal turbinates and lower viral loads in lung parenchyma compared with WA1/2020 infection. These data suggest that the SARS-CoV-2 Omicron variant may result in more robust upper respiratory tract infection but less severe lower respiratory tract clinical disease compared with prior SARS-CoV-2 variants.


Subject(s)
Weight Loss , Respiratory Tract Infections
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.23.465542

ABSTRACT

mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. We immunized rhesus macaques at weeks 0 and 4 and assessed immune responses over one year in blood, upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody binding titers also decreased in bronchoalveolar lavage (BAL). Four days after challenge, virus was unculturable in BAL and subgenomic RNA declined ~3-log10 compared to control animals. In nasal swabs, sgRNA declined 1-log10 and virus remained culturable. Anamnestic antibody responses (590-fold increase) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.

7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.15.460487

ABSTRACT

Second-generation COVID-19 vaccines could contribute to establish protective immunity against SARS-CoV-2 and its emerging variants. We developed COH04S1, a synthetic multiantigen Modified Vaccinia Ankara-based SARS-CoV-2 vaccine that co-expresses spike and nucleocapsid antigens. Here, we report COH04S1 vaccine efficacy in animal models. We demonstrate that intramuscular or intranasal vaccination of Syrian hamsters with COH04S1 induces robust Th1-biased antigen-specific humoral immunity and cross-neutralizing antibodies (NAb) and protects against weight loss, lower respiratory tract infection, and lung injury following intranasal SARS-CoV-2 challenge. Moreover, we demonstrate that single-dose or two-dose vaccination of non-human primates with COH04S1 induces robust antigen-specific binding antibodies, NAb, and Th1-biased T cells, protects against both upper and lower respiratory tract infection following intranasal/intratracheal SARS-CoV-2 challenge, and triggers potent post-challenge anamnestic antiviral responses. These results demonstrate COH04S1-mediated vaccine protection in animal models through different vaccination routes and dose regimens, complementing ongoing investigation of this multiantigen SARS-CoV-2 vaccine in clinical trials.


Subject(s)
Lung Diseases , Weight Loss , Respiratory Tract Infections , COVID-19
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.16.452733

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 global pandemic. Vaccines are needed to control the disease and bring an end to the pandemic. SARS-CoV-2 is an enveloped RNA virus that relies on its trimeric surface glycoprotein, spike, for entry into host cells. Here we describe the COVID-19 vaccine candidate MV-014-212, a live attenuated, recombinant human respiratory syncytial virus (RSV) expressing a chimeric SARS-CoV-2 spike as the only viral envelope protein. MV-014-212 was attenuated and immunogenic in African green monkeys (AGMs). One mucosal administration of MV-014-212 in AGMs protected against SARS-CoV-2 challenge, reducing the peak shedding of SARS-CoV-2 in the nose by more than 200-fold. MV-014-212 elicited mucosal immunity in the nose and neutralizing antibodies in serum that exhibited cross neutralization against two virus variants of concern. Intranasally delivered, live attenuated vaccines such as MV-014-212 entail low-cost manufacturing suitable for global deployment. MV-014-212 is currently in phase I clinical trials as a single-dose intranasal COVID-19 vaccine.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.16.448525

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the B.1.1.7 and B.1.351 VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 g) or low (0.2 g) immunogen dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose two vaccinations. SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.


Subject(s)
Weight Loss
10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.21.445189

ABSTRACT

Background: Vaccine efficacy against the B.1.351 variant following mRNA-1273 vaccination in humans has not been determined. Nonhuman primates (NHP) are a useful model for demonstrating whether mRNA-1273 mediates protection against B.1.351. Methods: Nonhuman primates received 30 or 100 microgram of mRNA-1273 as a prime-boost vaccine at 0 and 4 weeks, a single immunization of 30 microgram at week 0, or no vaccine. Antibody and T cell responses were assessed in blood, bronchioalveolar lavages (BAL), and nasal washes. Viral replication in BAL and nasal swabs were determined by qRT-PCR for sgRNA, and histopathology and viral antigen quantification were performed on lung tissue post-challenge. Results: Eight weeks post-boost, 100 microgram x2 of mRNA-1273 induced reciprocal ID50 neutralizing geometric mean titers against live SARS-CoV-2 D614G and B.1.351 of 3300 and 240, respectively, and 430 and 84 for the 30 microgram x2 group. There were no detectable neutralizing antibodies against B.1351 after the single immunization of 30 microgram. On day 2 following B.1.351 challenge, sgRNA in BAL was undetectable in 6 of 8 NHP that received 100 microgram x2 of mRNA-1273, and there was a ~2-log reduction in sgRNA in NHP that received two doses of 30 microgram compared to controls. In nasal swabs, there was a 1-log10 reduction observed in the 100 microgram x2 group. There was limited inflammation or viral antigen in lungs of vaccinated NHP post-challenge. Conclusions: Immunization with two doses of mRNA-1273 achieves effective immunity that rapidly controls lower and upper airway viral replication against the B.1.351 variant in NHP.


Subject(s)
Inflammation
11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.20.440647

ABSTRACT

Immune correlates of protection can be used as surrogate endpoints for vaccine efficacy. The nonhuman primate (NHP) model of SARS-CoV-2 infection replicates key features of human infection and may be used to define immune correlates of protection following vaccination. Here, NHP received either no vaccine or doses ranging from 0.3-100 micrograms of mRNA-1273, a mRNA vaccine encoding the prefusion-stabilized SARS-CoV-2 spike (S-2P) protein encapsulated in a lipid nanoparticle. mRNA-1273 vaccination elicited robust circulating and mucosal antibody responses in a dose-dependent manner. Viral replication was significantly reduced in bronchoalveolar lavages and nasal swabs following SARS-CoV-2 challenge in vaccinated animals and was most strongly correlated with levels of anti-S antibody binding and neutralizing activity. Consistent with antibodies being a correlate of protection, passive transfer of vaccine-induced IgG to naive hamsters was sufficient to mediate protection. Taken together, these data show that mRNA-1273 vaccine-induced humoral immune responses are a mechanistic correlate of protection against SARS-CoV-2 infection in NHP.


Subject(s)
COVID-19
12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.02.438218

ABSTRACT

A COVID-19 vaccine with capability to induce early protection is needed to efficiently eliminate viral spread. Here, we demonstrate the development of a nanoparticle vaccine candidate, REVC-128, in which multiple trimeric spike ectodomain subunits with glycine (G) at position 614 were multimerized onto a nanoparticle. In-vitro characterization of this vaccine confirms its structural and antigenic integrity. In-vivo immunogenicity evaluation in mice indicates that a single dose of this vaccine induces potent serum neutralizing antibody titer at two weeks post immunization, which is significantly higher than titer induced by trimeric spike protein without nanoparticle presentation. The comparison of serum binding to spike subunits between animals immunized by spike with and without nanoparticle presentation indicates that nanoparticle prefers the display of spike RBD (Receptor-Binding Domain) over S2 subunit, likely resulting in a more neutralizing but less cross-reactive antibody response. Moreover, a Syrian golden hamster in-vivo model for SARS-CoV-2 virus challenge was implemented at two weeks post a single dose of REVC-128 immunization. The results show that vaccination protects hamsters against SARS-CoV-2 virus challenge with evidence of steady body weight, suppressed viral loads and alleviation of tissue damage (lung and nares) for protected animals, compared with ~10% weight loss, higher viral loads and tissue damage in unprotected animals. Furthermore, the data show that vaccine REVC-128 is thermostable at up to 37 degree for at least 4 weeks. These findings, along with a long history of safety for protein vaccines, suggest that the REVC-128 is a safe, stable and efficacious single-shot vaccine candidate to induce the earliest protection against SARS-CoV-2 infection.


Subject(s)
COVID-19 , Weight Loss
13.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.03.433558

ABSTRACT

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing costs. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.


Subject(s)
COVID-19 , Weight Loss
14.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-225156.v1

ABSTRACT

We report the first Human Immune System (HIS)-humanized mouse model (“DRAGA”: HLA-A2.HLA-DR4.Rag1KO.IL-2RgcKO.NOD) for COVID-19 research. This mouse is reconstituted with human cord blood-derived, HLA-matched hematopoietic stem cells. It engrafts human epi/endothelial cells expressing the human ACE2 receptor for SARS-CoV-2 and TMPRSS2 serine protease co-localized on lung epithelia. HIS-DRAGA mice sustained SARS-CoV-2 infection, showing deteriorated clinical condition, replicating virus in the lungs, and human-like lung immunopathology including T-cell infiltrates, microthrombi and pulmonary sequelae. Among T-cell infiltrates, lung-resident (CD103+) CD8+ T cells were sequestered in epithelial (CD326+) lung niches and secreted granzyme B and perforin, indicating cytotoxic potential. Infected mice also developed antibodies against the SARS-CoV-2 viral proteins. Hence, HIS-DRAGA mice showed unique advantages as a surrogate in vivo human model for studying SARS-CoV-2 immunopathology and for testing the safety and efficacy of candidate vaccines and therapeutics.


Subject(s)
Pulmonary Embolism , COVID-19
15.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.08.430254

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a viral illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is a worsening global pandemic. COVID-19 has caused at least 1.7 million deaths worldwide and over 300,000 in the United States. Recently, two promising vaccines are being administered in several countries. However, there remains an urgent need for a therapeutic treatment for COVID-19 patients with severe respiratory damage that can lead to intensive care, prolonged hospitalization, or mortality. Moreover, an increasing population of patients manifest lingering disabling symptoms (called Long Haulers). Here, we tested the efficacy of a recombinant neural epidermal growth factor like 1 protein variant (NELL1-NV1) in a COVID-19 mouse model, transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor (tg-mice hACE2) infected with SARS-CoV-2. The administration of NELL1-NV1 to SARS-CoV-2-infected tg-mice hACE2 significantly improved clinical health score and increased survival. Analyses of bronchoalveolar (BAL) fluid demonstrated decreased levels of several cytokines and chemokines (IFN-{gamma}, IL-10, IL-12 p70, CXCL-10/IP-10, MIG and Rantes), in NV1-treated treated mice compared to controls. Cytokines including IL-1, IL-9, IL-6, LIX/CXCL5, KC/CXCL1, MIP-2/CXCL2, MIP-1/CCL3, and G-CSF, critical to immune responses such as neutrophil recruitment, viral clearance and vascularization, were increased compared to controls. Our data suggest the potential of NELL1-NV1-based therapy to mitigate the cytokine storm, modulate the abnormal immune response and repair respiratory tissue damage in COVID-19 patients.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Respiratory Insufficiency
16.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.17.423130

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a recent global pandemic. It is a deadly human viral disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with a high rate of infection, morbidity and mortality. Therefore, there is a great urgency to develop new therapies to control, treat and prevent this disease. Endogenous microRNAs (miRNAs, miRs) of the viral host are key molecules in preventing viral entry and replication, and building an antiviral cellular defense. Here, we have analyzed the role of miR-155, one of the most powerful drivers of host antiviral responses including immune and inflammatory responses, in the pathogenicity of SARS-CoV-2 infection. Subsequently, we have analyzed the potency of anti-miR-155 therapy in a COVID-19 mouse model (mice transgenic for human angiotensin I- converting enzyme 2 receptor (tg-mice hACE2)). We report for the first time that miR-155 expression is elevated in COVID-19 patients. Further, our data indicate that the viral load as well as miR-155 levels are higher in male relative to female patients. Moreover, we find that the delivery of anti-miR-155 to SARS-CoV-2-infected tg-mice hACE2 effectively suppresses miR-155 expression, and leads to improved survival and clinical scores. Importantly, anti-miR-155-treated tg-mice hACE2 infected with SARS-CoV-2 not only exhibit reduced levels of pro-inflammatory cytokines, but also have increased anti-viral and anti-inflammatory cytokine responses in the lungs. Thus, our study suggests anti-miR-155 as a novel therapy for mitigating the lung cytokine storm induced by SARS-CoV-2 infection.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
17.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.19.251249

ABSTRACT

The current SARS-CoV-2 pandemic is accompanied by high morbidity and mortality rates, and there is a compelling need for effective vaccines and therapeutic agents to lessen the severity of COVID-19 disease. Appropriate animal models are essential for testing of vaccines and therapeutics and for mechanistic studies of infection and the host response. The Spike (S) protein of SARS-COV-2 has a high affinity for the human ACE2 receptor, which is expressed on multiple cell types including alveolar epithelial and vascular endothelial cells. Wild-type mice are not susceptible to developing coronavirus-mediated diseases. Accordingly, several human (h)ACE2 transgenic mouse models have been developed for coronavirus research. However, these mice have failed to closely mimic important aspects of the human immunopathological responses to SARS-CoV-2. We report herein that DRAGA (HLA-A2.HLA-DR4.Rag1KO.IL-2R{gamma}c KO.NOD) mice infused with human hematopoietic stem cells from cord blood reconstitute a fully functional human immune system, as well as engraft human epithelial and endothelial cells, sustain SARS-CoV-2 infection, and develop severe COVID-19-like symptoms. In pilot experiments, infected mice developed parenchymal and epithelial lung infiltrations with granzyme B+ and perforin+ CD8+ T cells and alveolar CD61+ microthrombi, mimicking human immunopathological responses to SARS-CoV-2. We propose the DRAGA mouse as a novel pre-clinical tool for studying COVID-19 immunopathology and human immune responses to SARS-CoV-2, including events leading to the cytokine storm and coagulopathies, as well as for testing of candidate vaccines and therapeutics.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , Blood Coagulation Disorders , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL